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Summary

• A brief review of the Earth-Moon
plasma environment.

• Discussion of how the dusty plasma
environment links to exploration.
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Exposure Dilemma
• If a person or instrument were

standing on the Moon, what sort of
environment or “weather” would
one experience?

• There are many answers (e.g.,
cosmic rays are fierce).

• In this session we are focusing on
direct exposure to space plasmas.
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Direct Interaction with Sun,
Earth, and Meteoroids

• Direct Solar Wind
• Earth’s magnetotail and

plasmasheet
• Wake of the Moon
• Transient Na “atmosphere”

during Leonid showers.
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 Direct Solar Wind

D. Shriver (2005)



T. Wilson
6

 Earth’s Magnetotail & Plasmasheet

Mike Hapgood (2007) Ann. Geophys. 25, 2037
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 ESA’s Cluster Observation of Plasmasheet

Rutherford Appleton Lab

Summary of
50 keV

electrons
seen by
ESA’s

4 Cluster
Satellites

Plasmasheet
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 Moon’s Interaction with Plasmasheet

Rutherford Appleton Lab
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 Moon’s Interaction with Plasmasheet

Rutherford Appleton Lab

• The Moon occasionally encounters dense hot
plasma of the Earth’s plasmasheet.

• Lunar surface can build up a charge under these
conditions. (A “hair-raising” event for astronauts?)

• Observed by Lunar Prospector.
• Moon crosses Earth’s magnetotail around Full

Moon.
– Approx. 4 to 5 days per month.
– ± 5 RE wrt Ecliptic.
– There is an 18.6 yr cycle

in lunar charging.
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Moon’s
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 The Wake of the Moon has Unexpected
Features

• “Behind the Moon” is also relevant to
dust dynamics on the back side (away
from the Sun).

• There exists a plasma void (“wake”)
during the Moon’s orbit about the Sun.

• The interplanetary magnetic field,
however, increases in the wake region of
the Moon.
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 Wake of the Moon (1968)

Wolf R.A. JGR 73 4281 (1968)
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 Magnetic Field in Wake of the Moon

Wolf R.A. JGR 73 4281 (1968)
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Boston University

Direct Interaction with Leonids

Transient “atmospheric” Na tail can be seen
downwind for 100’s of lunar radii.

Flynn, B., and Mendillo, M., (1993) Science 261, 184
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Direct Interaction with Leonids
• Equations for Na lines.
• Sodium fluorescence intensity I(r, χ) is

a powerlaw formula:

  I(r, χ) = Io r-α

where Io
Io = (1 + 6cos8χ),

is measured in kilorayleighs, χ is the solar
zenith angle (latitude), and α is

α = 2(1 + cos3χ).
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Consequence:  A Dusty Regolith
Interacting With
Space Plasmas

• Question – How does lunar dust
interact with space plasmas?

• Answer – Dusty plasma physics.
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 Let’s Define a Dusty Plasma.
• Plasma is ubiquitous in the Universe.

– It is a fourth state of matter (besides solid, liquid, gas).
– It is an ionized or charged gas that is highly conductive.

• Dust grains are also quite common in the Universe.
– Dust is the powder form of solid matter.
– Dust can be readily charged just like elementary particles.
– Dust can be picked up by a passing plasma (pickup dust) or

kicked up by sputtering (and vulcanism).
– Unlike elementary particles or ionized nuclei (CRs):

• It has a different charge-to-mass ratio.
• It retains its material properties as solid matter (dielectric and

magnetic) with surface potentials.  Scalar properties become tensors.
• Dusty plasmas are studied in the rings of Jupiter and

Uranus, etc.  We have come a long way since Apollo.
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 Let’s Define a Dusty Plasma (2).• Dusty plasma is a plasma that suspends nanometer or
micrometer-sized particles.

• Occurrence
– Space plasmas
– Industrial applications (on Earth)

• Properties
– Temperature

– Electric Potential:  ± 1-10 V  (or kV’s in relativistic cases)

 Let’s Define a Dusty Plasma (2).

 0.86 eV10,000 KElectron temperature

~ 10-1 eV1,000 KIon temperature

~ 10-2 eV100 KMolecular temperature

~ 10-3 eV10 KDust temperature

TemperatureTemperatureDusty Plasma Constituent
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 Example of a Dusty Plasma.
Dusty Plasma Experiment (TCNJ & Princeton’s PPL)

    Dust clouds form where gravitation & electromagnetism offset (levitation).
Three appear above at equilibrium points determined by chamber geometry.
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 Relevance to Lunar Exploration
• Dust transport

– Levitation and transport of lunar dust has been under
study since the Apollo era.

– Dust mitigation is hence a major environmental issue.
– Dusty plasma physics is key to dust transport.

• This is more than electrodynamics and Leyden jars.
• Involves MHD and plasmas – the physics of highly conductive

ionized gas flow (fluid mechanics plus electromagnetism).
• Involves the transport of charge via pickup dust in the presence

of space plasmas and magnetic fields.
• Electric potentials and charging

– Moon’s electric potentials are dynamic and time-
dependent.  These need to be modelled and measured.

– Potentials produce electric fields (which transport dust).
– Risk involves charging/discharging in lunar ops.
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Dusty Plasma Levitation Geometry
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• Lorentz force
• Lorentz transformation
• Ohm’s law
• Plasma (Conductivity σ→∞)
• F = ma (gravity + EM)
• Lunar surface potential Φo
• Lunar electric field
• Ambient electric fields E*
• Levitation dynamics:

(Dusty plasma Z=Zdustq)

Dusty Plasma Levitation Dynamics
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Space Plasmas & MHD Physics On
The Moon

• There is more:  MHD physics (Alfvén).
• Magneto(magnetic field)-hydro(liquid)-

dynamics(motion).
• To gravitation and electromagnetism we add:

– Fluid mechanics
• This means the Navier-Stokes equations (nonlinear).
• Plus Maxwell’s equations (modified Ohm’s Law, etc.).

• Because MHD is a fluid theory, it cannot be
used for kinetic phenomena (Boltzmann Eq.) –
more on this later.
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3-Dimensional MHD Equations

Jia X. et al. (2008) JGR 113, A012748
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3-D MHD Equations – FLASH Code

Gombosi, Physics of the Space Environment (1998)
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An Example When MHD Does
Work on the Moon

• The Moon has no appreciable magnetic
dipole field – hence no magnetosphere.

• However, the Moon has magnetic
anomalies imbedded in its surface.

• These anomalies can creat mini-bow
shocks.

• They can be modelled with mini-dipoles.
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Example of mini-Magnetospheres
on the Moon (Lunar Prospector)

Lin et al. (1998) Science 281, `480
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2.5D MHD Sim of mini-
Magnetospheres on Moon’s Surface

Harnett & Winglee (2002) 
JGR 107, A009241

Univ. of Washington



T. Wilson
28

When Does MHD Not Work?

• MHD no longer works when the Navier-
Stokes equations are not applicable.

• This happens when the existence of
discrete particles becomes important.

• That requires the kinetics of Boltzmann
transport theory.

• The Moon has both.
• Now we come to Knudsen Numbers (1911).
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The Moon has an exosphere.
What is an exosphere?

• The definition varies:
• Knudsen # is Kn≥1.
• Mean free path exceeds

scale height.
• Consequences Kn>1:
• Discrete Simulation

Monte Carlos (DSMC).
• For larger length scales

(e.g. Earth radii), MHD
used for bow shocks,
geotail dynamics.Fluid Mechanics
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How Do We Define the Moon’s
Exosphere?

We define the
Moon’s
exosphere as
beginning
with Kn ~ 1.
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Conclusion
• We have reviewed some of the space physics

related to the transport of dust on and about
the Moon.  The physics is understood.

• What is lacking?
– The physics is very often nonlinear.
– The Navier-Stokes problems are unsolvable.
– This requires models, simulations, and Monte

Carlos.
– Models require laboratory study, flight data, and

actual measurements.
• Both simulations and flight measurements are

essential to the success of lunar exploration.


